Nonexistence of Solutions to Kpp-type Equations of Dimension Greater than or Equal to One

نویسندگان

  • JÁNOS ENGLÄNDER
  • PÉTER L. SIMON
چکیده

In this article, we consider a semilinear elliptic equations of the form ∆u + f(u) = 0, where f is a concave function. We prove for arbitrary dimensions that there is no solution bounded in (0, 1). The significance of this result in probability theory is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transition Fronts in Inhomogeneous Fisher-kpp Reaction-diffusion Equations

We use a new method in the study of Fisher-KPP reaction-diffusion equations to prove existence of transition fronts for inhomogeneous KPP-type non-linearities in one spatial dimension. We also obtain new estimates on entire solutions of some KPP reactiondiffusion equations in several spatial dimensions. Our method is based on the construction of suband super-solutions to the non-linear PDE from...

متن کامل

Nonexistence of Solutions in (0, 1) for K-p-p-type Equations for All

Consider the KPP-type equation of the form ∆u+f(u) = 0, where f : [0, 1] → R+ is a ‘nice’ function. We prove for arbitrary dimensions that there is no solution bounded in (0, 1). The significance of this result from the point of view of probability theory is also discussed.

متن کامل

Problems in the Theory of Semilinear Pde’s and Their Connection to Probability

Starting with a result on the nonexistence of the solution bounded between zero and one to a KPP-type equation, we explore the connection between these type of semilinear equations and probabilistic objects. We describe some methods where PDE techniques help in investigating properties of branching diffusions and superdiffusions as well as probabilistic approaches where these processes are expl...

متن کامل

Fun and Frustration with Hydrogen in 1 + 1 Dimension

The Coulomb potential is derived in " one space-one time " dimension, and introduced into Dirac and Klein-Gordon equations. The equations are solved, and somewhat surprising result-nonexistence of bound state solutions in the lower dimension-discussed and identified as another fine example of the " Klein paradox " .

متن کامل

Multi soliton solutions, bilinear Backlund transformation and Lax pair of nonlinear evolution equation in (2+1)-dimension

As an application of Hirota bilinear method, perturbation expansion truncated at different levels is used to obtain exact soliton solutions to (2+1)-dimensional nonlinear evolution equation in much simpler way in comparison to other existing methods. We have derived bilinear form of nonlinear evolution equation and using this bilinear form, bilinear Backlund transformations and construction of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006